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. Abs~'ract 

It is shown that a naturaJ ~ut rt.~4u~' ~er~r of Jafle's re, aff~.~aafical resu]tz c~:v 
cer~ng strict toca!isability is jt~t an ea~, consequence of GeKand's and Skilov's work en 
spaces of 'type S'. Furthermore, proof is :6ver~ for t1~e sNteme~t ~_h~t them Js no minim~ 
s m~_e of t/~st functions with compact support, wher~s every :ovntzble ~ntersec~oa of 
.~.~ ~oxes Mm contair~ test run.ions with compac-~ s u p ~ .  

I.  lntro&~ctfon 

I I  is well known that  fiekL~ ha~e to be treated as operatorovalued general- 
ised-f~anctions, i.e, fields have ~e be smem~ed with sufficiently smooth test 
functions in order to yield proper  operator~. A l t h o ~ h  one usually a~sames 
a field to be an operator-valued t empered  distribut.ion, ~his is a matter  o f  
convenience rather than of  conviction: Indeed, there are s~,~er~d hints (see 
Jaffe (1967) and references given there) indicatL~g ~a~ classes o f  test 
functions smaller than ~ have to be used for pb.y~icaIiy rc.~evant theories 
in order to allow the off-mass-shell vacuum expectation ~aiues in momen-  
tum spa,'e to grow faster than any po!ynomiat.  This means we ha~,e to 
postulate some sufficienily rapid decrease at infinity for ~ur test functions~ 
in momentum space. However, in order to still be able to formulate local 
commfitatjvity, the question arises whether test functions exist with 
compact support fulfi!~ing the postulate o f  rapid decrease ~n m~mentu;u 
space. 

This prob!em has beea treated most successiuIly by Jaffe (196~, who 
showed that for an entire %nction of  the form 

gO ~) = Z c~,, , co > 0, c~. _-> 0 (1 A) 
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the necessary and  suffir condRi~  for {he existence 07 ~s~ element 

fer ~ set oLnonmeg~ive im~gers el, n, mo .. . . .  ms is given by 

! ~  =~ daa,ste ~he Na~,;s o f N i f ~ -  ~( /~}  Sti l l ing (I~) by g~(R~) and its 
one-dimensional varian t by ~'~(R~). 

Re~ntly, new interest in the Jaffe class of strictly IocatL~bte fields, i.e. 
fields defi~eA over some c~g(R4) with g according to (1.1) and (1.3), arose 
in connection ~J~  ~on-po~r i Lagra~g~n fiel~ 1booties (Lehmann & 
PohImeyer, I97t ; tsham el aL~ LW/I) There is no doubt Jaffe's concept of 
L~trict localisability' is of the greatest im~a::trm~.. Therefore the test 
Nnction spaces of Jaffe's class should, at last, be treated in the f~mework 
~_deq:a~.e to them: the Ge!fand-.ghilov theory, of spaces of  type S. Tn;,~ is: 
b~,~.i&~5 ~,me generalisations, the main purpose of the present paper. It 
shed.~ some tig.h': into the mathematicaI concept of the Jaffe class and 
e e ~ i n ~  makes work w;thin ~thN class easier. 

2. Form~dm~i~ o f  the Ma~hematicai Prob~'m ~ Results 

A. In order to derive Jaffe's res~zs in an eve~ more general form it ~s 
quite sufficient to ~reat the follo~Sng simpUfied problem: 

Determine the ~eccssary a~_d sufficient conditions on a non-d~reasing 
positive function g (defined over [0,+m)) for the existence of  an elemeat 
.fe~ the Fourier transform f =  ~.~f of which fi~lfits the inequ~lifies: 

!g( l t[ ) f ("( t ) l  <(-4 foi eve.,yt~Rx and for every non- 
negative integer q; (2~ being a suitable functio~ ofq (2.t) 

For,purely technical reasons We restrict ourselves ~o such functions g, 
which have the prope~y : 

For every positive integer n there is a posR,~ve number m~. such 
t h a t  t h e  f l ~ ' ~ o n  t-~g(t) is  non-increasing over (0,m,] and 
non-d_~ecreasing over [m,,,-~-m~ (2,z) 

Note, however, that this restriction is weaker than Jaffe*s restriction (1.t), 
since we are only ~nterested in the non-trivial case g ~ ~M. A fimction of  
type (2.2) but not of type (!_!) is, for instance, 

g(t)  --= s~(t) = exp (!~ i '/~) (23) 

�9 ~.;r "~ ;S ~ p^~; r ;v~  rm ~ h o r  g r e a t e r  t h a n  . . . . .  _,,ol 



We denote the class of all r~m~-decr~sing p~}sitive fuP, c~ions g ( d e ~ , ~  
ov~  [0,+~-~)) with properW ~ 2 }  by f~ and the class of al~ functions.f'e 5 ~ 
f~hqlling (2.I) by d ,  (m-, i,o more detail, ~(a,})- Further-more ~ ,  use the 
notatio~ 

A subset . ~  o f  S~ is ca!led non-trivial iffthere is ~-funcZior,.S~ ~.,~'~ which 
does not  vanish idem~.ally. The "extended Jaffe class', thee. is the ciass of 
all eomxtable imersections .jF of  spaces .f~,,~ (g ~ if, A > O) s~cix t t ~  

D, J ' i s  no . t r iv i aL  I~dcext, the extended Jaffe class contains the Jaffe 
class 

{~.]~ A % nor~. aivia!} 

t ~  

~. Since !~- F] ,'i~J~ i~ he}n-irMa! ~;f and only if ~ . . ~  Js non-tr/viaI for 
A > O, the solution o f ~  problem i~ ~ivc~ by : -  " 

"Theorem i : Let g be an ciemcm of !~; m~d Let A be a p~Mve c~s~ani, 
Then ~ .  z is non-trivial if  and only if 

This theorem immediate!y ~.e.W:" s ~,2' !o the following qu.est;.on: qs there 
any maximM g s ~r for which (2.4) ;:eld~ _' The cerreca answer is, no : 

Lemma I: Let gi. g~ . . . .  be a ~equence of elements s ~ NtfiFAng (2.4). 
Then there is an entire g ~ ff v:hicb futfils (2.4) and: 

1Am g~(t)/g(O = 0 for k = i, ~ . . .  

While this lemma shows that every countable imersection of  non-trivial 
spaces ~ , ~  (g ~ ~f, A > 0) is non-trivial, the intersection of Mi non-trivial 
spaces ~ A (g ~ if, A > 0) is trivial: 

Theorem 2: Let f e  N be a function that does not vanish identically. 
Then there is a Nn~ion  g ~ ff fulfilling (2.4) such t h a t f ~  c~, 2. 

C. The results listed in B allow the fo .owmg conclusions: 

CoroSary!: The extended Jaffe class is the set of  a!l cowntable ihter- 
sections of  Spaces ~ .  ~ with g ~ fg fulfilling (2,4) and A > 0 . .  

Corollary 2: There is no minimal (in the set theoretical sense) ,~ within 
the extended Jaffe class. 



cO)= ~ c~t'~; e,>o, :,>=~.~, " -r=O, hz, . . .  ( t I )  

Now let g be some element o f  # : .  Under this conditiou a funetion ~e 
belongs to .~'#.~ ~i" and only if: 

]Pf~o(t)[ < Cq.~(I[A + ~)~ 1/c~ foreveryt  ~ Rz, every~ > O~ 
and for all no ,nega t ive  integers k, q; C~.~ being a suitable 
f u ~ J o n  o f  q and fi ~3.2) 

In ~ h e r  words. 5~.  ~ is a spe~iN space o f  ~ p e  S (.~e Gelfand & Shilov 
(!964)). Therefore we already know from Getfaad & Sha.-r (1964) how to 
manag~the pro~,f e f T b e o r ~  i_ A!! w:e b~t.e to do  ;Stn de~%e thefollowing: 

Lemma2:  L e t f b e  an  element of N (and g e f ) .  f i f e  N., ~ me~ 

l ~ "; : r-_t~ ~j ~.fix~+~ t/c~+, for  e gi .  f ~(r ~ . .~ . :  - , i - evet3"f e ~  
> 0,and forevery~J~gerk;  C~ beinga suitab!efunctiafi of~  (3.3) 

holds with n = 2. Conversely, if (3.3} bo~ds for ~ =: 0 t h e ~ f ~  ~,~. ~. 

,Proof: For  e v e r y f e  6 a wehave  the inequality 

sup lf~'(t)l <= (~)-'~ [dt[~ f(t)]; /= : f  

the special case fe  ~ .  ~ this implies 

Z (2AY+~c,§ -~:~ dt~-2 c~i:Atl [f(-) i  < 

for 2 e (0,1) and hence the first sta,'eme~ of  Lemma 2 ~s prove& 
Cenversely, Ie~ t~s suppose tha.* (.o.~: ~ fulfilled for n = O. Since f ~  

and . . . . . .  

I2( ) , . . ,  ' 
we even have 

"[ 
[[:f(t)](~l < C~,e(1,:4 + ,5) ~ l]c~ for every t ~ Rz, every ~ > 
0, and for all non-negative integers k, �9 ' q, C~.s being a sukabte 
function o f q  and 

and hence 

(2n) t/2 sup [t~ f'r <= f dt l[H f(t)]a~i < DC~,~(1/A + ~)klfc/~ 
t~R~ 

where D denotes the diameter o f suppf i  This is already (3.2), Lo. the second 
statement of  Lemma 2 is proved, too. 
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Let us note, by ~he way. " f ' f imctio, f e  ~, th~a~ this proo. aJso shows that a 
&tready belongs to ~ , .~  ifi~s Fourier transform f =  ~-ffulf i is :  

< b (0oa) 
l~gR l 

Now, according to a theorem of  Carleman and Os-trowski (see Gdfand 
& Shilov (1964) and referen~:e given ~he,e) a necessary a~d stifficfent 
eondRion for the existence e r a  funct ionf~.@ fulfilling (33) is: 

1 

w h e ~  F,  denotes the "OsiTowsld function', defined by 

- F,  f t ) = ~ a x z : , . ~ : ;  t >= 1 
t~ 

Tha~ OA~ i~ irtdeed, equivalent t~ (2A)is show~ by the foI~c:~'i, g it)equalities 
(valid for t > O): 

k 

| - : T  . . . .  . - - I  " j  

t - = o  - -  ~ - u  - 1 .  - - ~ o  J 

Thus  Theorem 1 is proved for entire g & t h e  type (3.1)._ 

~ .  Let  g be aa~ arbitrary element of  ~ and m~ (n = 1,2 . . . .  ) the torte-  
spreading sequence, defiaed by 9622). Then the first thing to notice is that 
this sequence is non-decreasing and u~ibounded. On the other hand we 
have 

g(t)  <-_ (t/ra,)"+~g(m~) for m. -<-_- * _5- < m,+, 
and 

g( t )  >= (t /m.)"g(m.)  for t e [0, +~o) (n = I, 2 . . . .  ) 

Thus, if we define 

c~ = g(O); c. = g ( m . ) / ( m ~ ,  n = I, 2 . . . .  
o~ 

= E e , t "  
1r 

we get the inequalitie s: 

(1 - 2)~(2t) < g(t)  < [g(nh)/g(O) + t/nq]R(t) + co/m,. 

for t ~ [0, + ~ )  and 2 ~ (0,1) 

Since both functions, on the right and on the left ofg( t ) ,  are elements.of 
"//:(it is for this reason that co~roT, is added on the right) we see that 
Theorem i is - '  . . . . .  ':~ ~-- arbitra e ~' a l s o  u  
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C, As a by~product of the pr00f:for ~ e o r e m  1, ouflir~ed is sections d 
and B, we have the r~i|owi~g: 

lz, nvna 3: Let g be an element of ~ and let A ~ a pQsit~e corista~~ 
T h e n  ~ . ,~  is non-h-ivial if and only if there is ~ f~nction fe .~ ,  wi~h a 
Fo~rier h-ansforrnffatfilling (2.!) for q f ~ d  to q = O. 

4. Proof of Le~mrta 1 
In s,%'tion 3B we have seen that for every ~ E 7, fulfillhag (2.4), th~-e is 

an e n t ~  g ~ ~u fulfitEng (2.4) with 

~g(',) < g(t) for t > 0 

Hence ft Js sufficient to prove Lemma ! ~or g~ e .//r Then 

g(l)=tZa~g~(t)+a.; for t e R j  (4.1) 

definers an e~ire g ~ ~g" with the desired property 

! ~  g~&)~g&) = 0 - far  k = 1 , 2 , . .  
t ~  

if the sequence a~, a2 .. . .  is non-increasbn~, 1~sitive and of-sufficiently 
rapid decrease; for example: 

O<a~ <[k!gk(k)] -~: , a~+~ <ak, k = L2 , . . .  (4.2) 
S i n ~  

- ; ~ " ~  f leg [~,&)r..~+=.~:(t)] dt = log~(t  ) dt 

1 1 

for ever)" two functions ~ ,  if2 ~ ~ fulfilling (2.4), we may impose the 
additional restrictions 

k 

1 ~ - f  - dt<~(t/2):;~.l k = l , 2  . . . .  (4.3) 

l 

on the sequence a~, a:, . . . .  Then the restrictions (4.3) and (a.2) guarantee 
that g, as defined by (4.1), is an element o f ~ "  fulfi1~ng (2.4). Thus Lemma l 
is proved. 

5. Proof of T,~eorbm 2 
L e t f ~  ~ be a function that does not vanish identically. Then 

a~ = m a x s u p  I f ' ( t ) ]  
v ~ q  t~.R l 

(5.1). 



define~ a u t~-d~reas ing  sequer~ce of  pesitive ~umbers a~, al ...... Ge!fand 
& Shi__!o~ (!964) h~ve ~hm~_ tb '~ 9~ C~ S ~ ~ tri~'~) (~ee also their defin.;l~on 
and properties of  S ~). For  f t h i s  m~.ns: 

m f / ~ = O  for every $ >  0 

Therefore, i f  we define rec,~sively 

co = l iar ,  e~ = m i n I l / a ~ ,  c~_Jk] 
we have 

maxc,  a~ = 1, 
i r~ i /  

and hecate: 
for ), e (o , ) )  

(5,2) 

(53)  

(5.4) lim 2~ c~a~ = O 
q-tr 

WNIe (52) teils as that 

gO) = E * ,  

is an elernent e f  ~':'~, we cenclude from (5.4) that 0 .3 )  is va!id for n.--- 0 
a~)d A --= 1, i.e.: 

Thus, by Theorem 1, g fulfils (2.4). Consequenfl2/we get an enlJre ~ ~ ~e. 
fulfilling (2.4) if we define 

i lo 

galt)=  e,t ; t e lh  
lv=fj 

and, according to Theorem 1, 2a . :  is non-trMaI But (5.3) and (5.1) show 
that 

I fa)(t)[  < C~(l~ + b') ~+~" ~2~+z for eve,z. ~ ~_b~, every ~ > O, 
and for every integer k; Co being a suitabie fu~cfien of,3 

is not valid. Hence, by applicatioa of  Lemma 1 (first statement), wc see 
that 

3qn)s Theorem 2 is preyed. 

6. Discussion 

A. TO give an illustrathve example for the application of  our results, .~et 

us note that (in the Gelfand-Shilov notation (1964)) S B, : = S~. ~ is in the 
extended Jaffe class for/3 > ! and that the space Cg(R 0, as introduced by 
Jaffe in 1966, is just the ifitefsection ofa!l S e, 1 with fl > 1. Hence Corollary 1 
tells us that  ~'(R~) is in the extended Jaffe class. 
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Another applicatio~ is !he foliowhlg: Suppose 

'Io be a ge~eralised fimcfion over some ~ of  Jaffe's class. Thmrl there, is a 
aon-tfiv/a]fe ~ n ~g~. for wh~h we may conclude: 

" [c,[ max { ( f* f ) a ' ( t ) ]  (o)1= 
" ~  ~, .o  t~R 1 

ZP- . . . .  ' ~ ~{~ / *  f)-'")(t')e m dt'[D-' 
tlm 

[ 

where D derrofes the finite diameter of suppf* f  Hone,  b) Lemma 3 
and Theorem 1, 

g(t=) = Ir t= 

de~Z~,es a~ eat/~'~. s -ction of tyt~e (1.3). This argument prm:ides the s ubsta ~ce 
for Iz~marP~ a~d PohImeyer's definition of 'minima!!y singular' super- 
~propagato~ in no~-polynomial Lagrangian field theory (Lehmann & 
Poht~eyer, 1.07I) 

B. Al thon~ in the presen~ work we have considered the one-d/men- 
sionat case only, generalisadon to the n-d~mensionai case (n > I) is quite 
easy (Jaffe, 1967). Furthermore, ~nce h ~ ~ a~d f=  ~ Lm_p!y h *f~ ~ .2i'~, 
it is a consequence of a distr/bution t h e o ~ a !  standard argument that 
eyeD" space ~ of the Jaffe class is dense in ~ .  Thus it is justifiable to ~ay 
that ou~ results are more general than Jaffs 

C. As far as the physical applications are eonce~.ed, there are several 
things to be improved in Jaffe, 1966 and i 967. For examp;.e, J a~ ' s  definition 
of strict Iocal~sability is not related to the topological structure of the test 
banction space, whereas one should (without reducing the class) postulate 
2 F~ T~ to be dense in .~ .  An unpleasant feature of the Jaffe class is, for 
ins~aace, that the lack of Fourier symmetry implies that there are no 

. korentz-invariant muitipliers in ctf~(R4) (g  ~ C3~,) other than. polynomials, 
However, all the~ que~ions will be the subject of a forthcoming paper 
CLficke, in preparation), 
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